
CarnegieMellon

Software Engineering Institute

Discovering Architectures from
Running Systems: Lessons
Learned

CMU/SEI-2004-TR-016
ESC-TR-2004-016

Hong Yan
Jonathan Aldrich
David Garlan
Rick Kazman
Bradley Schmerl DISTRIBUTION STATEMEMT A

Approved for Public Release
Distribution Unlimited

December2004

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

I

WAWA,

_ _ CarnegieMellon
-=- Software Engineering Institute

Pittsburgh, PA 15213-3890

Discovering Architectures from
Running Systems: Lessons
Learned

CMU/SEI-2004-TR-016
ESC-TR-2004-016

Hong Yan
Jonathan Aldrich
David Garlan
Rick Kazman
Bradley Schmerl

December2004

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

_ 20051223 034

This report was prepared for the

SEI Joint Program Office
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external

and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Camegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site

(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract .. v

1 Introduction .. 1

2 Related Work .. 3

3 Technical Challenges 5

4 DiscoTect State Engine Design ... 7
4.1 State Machine Definition .. 7

4.1.1 Elements of a State Machine .. 7
4.1.2 Informal Operational Semantics ... 9

4.2 Pipe/Filter Example 11

5 Implementing DiscoTect ... 17

6 Adaptive Architectures for Mobile Systems (AAMS) Case Study 19
6.1 Design of the AAMS State Machine ... 20

6.2 The Discovered Architecture ... 21

7 EJB Case Study ... 23
7.1 Design of the EJB State Machine ... 23

7.2 The Discovered Architecture .. 24

8 Lessons Learned and Future Work .. 27

References .. 29

CMU/SEI-2004-TR-016

CMU/SEI-2004-TR-O1 5

List of Figures

Figure 1: The DiscoTect Architecture ... 6

Figure 2: Elements of a State Map .. 8

Figure 3: State Machine for Discovering Filter Components 10

Figure 4: The State Machine Fragments for Discovering Pipe Connections 13

Figure 5: The Architecture Fragment Resulting from Running the System and
Using the State Machine Shown in Figure 3 13

Figure 6: Relevant Output from the Event Filter ... 15

Figure 7: The Discovered Architectural Model of PrereqCheck 16

Figure 8: Documented Runtime View of AAMS .. 20

Figure 9: Discovered Architecture of AAMS ... 22

Figure 10: Documented Architectural View of Duke's Bank Application 24

Figure 11: Discovered Architecture of Duke's Bank .. 25

CMU/SEI-2004-TR-01 6 iii

iv CMU/SEI-2004-TR-O1 6

Abstract

One of the challenging problems for software developers is guaranteeing that a system as

built is consistent with its architectural design. This report describes a technique that uses

automatically generated runtime observations of an executing system to construct an architec-

tural view of the system. In this technique, mappings are developed that exploit regularities in

system implementation and architectural style. These mappings describe how low-level sys-

tem events can be interpreted as more abstract architectural operations. In addition, this report

describes the current implementation of a tool, called DiscoTect, that uses these mappings,

and it shows how DiscoTect can highlight inconsistencies between implementations and ar-
chitectures. Furthermore, two case studies are provided that illustrate how DiscoTect works

and how it can be applied to real-world systems.

CMU/SEI-2004-TR-016 v

vi CMU/SEI-2004-TR-O1 6

1 Introduction

For most complex systems, it is crucial to have a well-defined architecture. Such a definition
provides a high-level view of a system in terms of its principal runtime components (e.g.,

clients, servers, databases), their interactions (e.g., remote procedure call [RPC], event multi-
cast), and their properties (e.g., throughputs, reliabilities). As an abstract representation of a
system, an architecture permits many forms of high-level inspection and analysis [Bass 03].
Consequently, over the past decade, considerable research and development has gone into the
development of notations, tools, and methods to support architectural design.

Despite advances in developing an engineering basis for software architectures, a persisting

difficult problem is determining whether a system as implemented has the architecture as de-
signed. Without some form of consistency guarantees, the relationship between architectural
insight and the actual system will be hypothetical at best, invalidating many of the benefits of
architectural design.

Currently, two principal techniques have been used to determine or enforce relationships be-
tween a system's architecture and implementation. The first is to ensure consistency by con-
struction. This can be done by embedding architectural constructs in an implementation lan-
guage (e.g., as described by Aldrich and colleagues [Aldrich 02]) where program analysis
tools can check for conformance. Or, it can be done through code generation, using tools to

create an implementation from a more abstract architectural definition [Shaw 95, Taylor 96,
Vestal 96]. Although it is effective when it can be applied, ensuring consistency by construc-
tion has limited applicability. In particular, it can usually be applied only in situations where
engineers are required to use specific architecture-based development tools, languages, and
implementation strategies. For systems that are composed of existing parts, or that require a
style of architecture or implementation outside those supported by generation tools, this ap-
proach does not apply.

The second technique is to ensure conformance by extracting an architecture from a system's
code, using static code analysis [Jackson 99, Kazman 99, Murphy 95]. When an implementa-

tion is sufficiently constrained so that modularization and coding patterns can be identified
with architectural elements, this technique can work well. Unfortunately, however, the tech-
nique is limited by an inherent mismatch between static, code-based structures (such as
classes and packages) and the runtime structures that are the essence of most architectural
descriptions [Garlan 02]. In particular, the actual runtime structures may not even be known
until the program runs: clients and servers may come and go dynamically; components (e.g.,
Dynamic Linked Libraries [DLLs]) not under direct control of the implementers may be dy-
namically loaded; and so forth.

CMU/SEI-2004-TR-016 1

A third, relatively unexplored, technique is to determine the architecture of a system by ex-

amining its behavior at runtime. The key idea is that a system can be monitored while it is
running. Observations about its behavior can then be used to infer its dynamic architecture.

This approach

0 has the advantage that in principal it applies to any system that can be monitored

0 gives an accurate image of what is actually going on in the real system

0 can accommodate systems whose architecture changes dynamically

0 imposes no a priori restrictions on system implementation or architectural style

There are a number of hard technical challenges in making this technique work. The most

serious is finding mechanisms to bridge the abstraction gap: in general, low-level system ob-
servations do not map directly to architectural constructs. For example, the creation of an ar-
chitectural connector might involve many low-level steps, and those actions might be inter-

leaved with many other architecturally relevant actions. Moreover, there is likely no single
architectural interpretation that will apply to all systems. Different systems will use different
runtime patterns to achieve the same architectural effect, and, conversely, there are many pos-

sible architectural elements to which one might map the same low-level events. In this report,
we describe a technique to solve the problem of dynamic architectural discovery for a large
class of systems. The key idea is to provide a framework that allows the mapping of imple-
mentation styles to architecture styles. This mapping is defined as a set of conceptually con-

current state machines used at runtime to track the progress of the system and output architec-
tural events when predefined runtime patterns are recognized. By parameterizing the
framework by both architectural and implementation styles, we can exploit regularity in sys-
tems, while still providing flexibility in defining new abstraction mappings.

In this report, we introduce DiscoTect, a system for discovering the architectures of running
systems. In Section 2, we discuss related work. Section 3 presents the technical challenges in
producing an architecture discovery framework that can be used with multiple architectural
styles and multiple systems. Section 4 presents our main technical contribution: the use of

state machines to map between implementation-level events and architectural operations. We
discuss implementing DiscoTect in Section 5, and we present results from two case studies to
illustrate the utility of DiscoTect in Sections 6 and 7. In Section 8, we discuss the strengths
and weaknesses of our approach. Finally, we present conclusions and future work.

2 CMU/SEI-2004-TR-016

2 Related Work

Our work is mostly related to other approaches for dynamic analysis of a system. A number

of techniques and tools have been developed to extract information from a running system,

including instrumenting the source code to produce trace information and manipulating run-
time artifacts to get the information (e.g., as described by Balzer and Goldman [Balzer 99]

and Wells and Pazandak [Wells 01]). Many technologies are available for monitoring sys-

tems, and we build on them. However, they do not, by themselves, solve the hard problem of
mapping from code to more abstract models. In previous work, we developed an infrastruc-
ture doing certain kinds of abstraction [Garlan 03]. However, this approach was limited to

observing properties of a system and reflecting them in a preconstructed architectural model.
In the work discussed in this report, we show how to create that model.

Dias and Richardson [Dias 03] use an XML-based language to describe runtime events and to

use patterns to map them into high-level events. Analyzing these events to determine archi-
tectural structure is not addressed. In addition, a simple static mapping from low-level system
events to high-level ones has limited expressiveness. For example, it cannot handle the case

where the event analyzer initially has an interest in one set of events, but then changes its in-

terest after the initial events have occurred. Also, it doesn't provide a way of specifying event

correlations or mapping a series of correlated low-level events to a single high-level event-a
crucial capability needed when discovering the architecture of a system. Kaiser and col-
leagues use a collection of temporal state machines to perform pattern matching against run-

time events [Kaiser 03]. Our approach is similar, but it makes architectural styles or patterns
explicit.

A number of researchers have investigated the problem of presenting dynamic information to
an observer. For example, some researchers present information about variables, threads, ac-
tivations, object interactions, and so forth [Reiss 03, Walker 98, Walker 01, and Zeller 01].

Ernst and colleagues show how to dynamically detect program invariants by examining val-
ues computed during a program execution and by looking for patterns and relationships

among them [Ernst 01]. This process is somewhat different from detecting architectural struc-
ture.

Madhav [Madhav 96] describes a system that allows Ada 95 programs to be monitored dy-
namically to check conformance to a Rapide architectural specification [Luckham 97]. His

approach requires the source code to be annotated so that it can be transformed to produce
events to construct the architecture. In contrast, our approach does not require access to the
source code, and it does not rely on explicit architectural construction directives to be em-
bedded in the code as does ArchJava [Aldrich 02].

CMU/SEI-2004-TR-01 6 3

A large body of research has investigated specification of the dynamic behavior of software

architectures. Of the many approaches, some use explicit state machines (e.g., as described

by Allen and Garlan [Allen 94] and Vieira and colleagues [Vieira 00]). These approaches,

however, do not link architecture to an executing system.

4 CMU/SEI-2004-TR-016

3 Technical Challenges

Any approach that supports dynamic discovery of architectures must address three problems:

(1) observing a system's runtime behavior, (2) interpreting that runtime behavior in terms of
architecturally meaningful events, and (3) representing the resulting architecture. In this re-
port, we are concerned primarily with the second problem of bridging the abstraction gap
between system observations and architectural effects.

A number of issues make this a hard problem. First, mappings between low-level system ob-
servations and architectural events are not usually one to one. Many low-level events may be
completely irrelevant. More importantly, a given abstract event, such as creating a new archi-
tectural connector, might involve many runtime events, such as object creation and lookup,
library calls to runtime infrastructure, initialization of data structures, and so forth. Con-
versely, a single implementation event might represent a series of architectural events. For
example, executing a procedure call between two objects might signal the creation of a new
connector and its attachment to the runtime ports of the respective architectural components.
This ambiguity implies the need for a technique that can keep track of intermediate informa-
tion about mappings to an architectural model.

Second, architecturally relevant actions are typically interleaved in an implementation. For
example, at a given moment, a system might be midway through creating several components
and their connectors. Because architectural events are interleaved with each other, any at-
tempt to recognize architectural events must be able to cope with concurrent intermediate
states.

Third, there is no single gold standard for indicating what implementation patterns represent

specific architectural events. Different implementations may choose different techniques for
creating the same abstract architectural element. Consider the number of ways that one might
implement pipes, for example. Indeed, one might even find multiple implementation ap-
proaches in the same system. Moreover, for the purposes of architectural discovery, no single

architectural style or pattern can be used for all systems. For example, sockets might be used
to represent many different types of connectors. Therefore, we need a flexible way to associ-
ate different implementation styles with architectural styles.

To address these concerns, we adopted the approach illustrated in Figure 1. Monitored events

are first filtered by a Trace Engine to select the subset of system observations that must be
considered. The resulting stream of events is then fed to a State Engine. The heart of this rec-
ognition engine is a state machine designed to recognize interleaved patterns of runtime
events and, when appropriate, to produce a set of architectural operations as outputs. Those

CMU/SEI-2004-TR-016 5

operations are then fed to an Architecture Builder that incrementally creates the architecture,

which can then be displayed to a user or processed by architecture analysis tools.

State Architecture Model
Engine Builder

Trace Engine

Figure 1: The DiscoTect Architecture

To handle the variability of implementation strategies and possible architectural styles of in-

terest, we provide a language to define new mappings. Given a set of implementation con-
ventions (which we will refer to as an implementation style) and a vocabulary of architectural

element types and operations (which we will refer to as an architectural style), we provide a

description that captures the way in which runtime events should be interpreted as operations
on elements of the architectural style. Thus, each pair of implementation style and architec-

tural style has its own mapping. A significant consequence is that these mappings can be re-

used across programs that are implemented in the same style.

6 CMU/SEI-2004-TR-016

4 DiscoTect State Engine Design

In this section, we discuss the design of the State Engine portion of DiscoTect. We first intro-

duce the language to define the state machine. The semantics for the state machine differ

from the standard definition; the informal operational semantics are given in Section 4.1.2.
We then illustrate the approach by showing how it can be used to discover the Pipe/Filter ar-
chitecture of a small Java application. Later (in Section 6), we will present a more substantive

example.

4.1 State Machine Definition

To illustrate the definition of state machines, consider a situation in which we want to recog-

nize the creation of instances of some binary connector type. Let's assume the implementa-
tion constructs the connector by first creating instances of Read and Write objects through

which data are to be communicated. These objects correspond to read and write ports on ar-
chitectural components. A connector is constructed between those ports when a component
invokes the receive method of its Read object, passing it the Write object that contains the

data. The state machine to construct this connector will have states that recognize when Read

and Write objects are created and when a receive method is called. Transitions between the
states will construct elements in the architecture (ports, roles, and connectors).

Complicating this scenario is the fact that the implementation may create Read and Write ob-

jects in any order and, in fact, may construct many Read and Write objects before communi-
cating any data. This kind of interleaving requires the recognition engine to have multiple
active states. Furthermore, because the creation of the connector relies on information from

previous states (i.e., the Read and Write objects), we must retain information from previous
states for use in evaluations at subsequent states.

A DiscoTect state machine is a graph of states, triggers, actions, and transitions interpreted by

the State Engine. States keep track of the progress of architecture discovery. Each state is as-
sociated with one or more triggers that define the type of events that can cause transitions
between states and that specify the conditions under which these transitions can occur. When

a transition is taken, it may produce actions to construct architectures.

4.1.1 Elements of a State Machine
The elements of a state machine are illustrated Figure 2. Specifying a state machine requires
the definition of states, triggers, actions, and transitions.

CMU/SEI-2004-TR-016 7

Condition

Figure 2: Elements of a State Map

States. States are staging points in the discovery of some architectural action. A state may
represent partial knowledge of the architecture-for example, the knowledge that a connector

has been created, but we don't yet know which components it connects-and allows us to

build complex mappings to combine pieces of information into coherent architectural actions.
States are linked by transitions, which form a graph representing implementation flows lead-
ing to architectural actions.

Each state in the state machine is associated with a set of state variables. A variable v is pre-

sent in state s if, for every incoming transition of s, v is either defined on the transition or pre-
sent in predecessor states. Variables must be defined on every incoming edge to ensure well-
defined values. Conditions and actions on the outgoing transitions for s can refer to the vari-
ables present in s, as well as any new variables defined by the transition.

Triggers. A trigger consists of two parts: (1) an event specification and (2) a condition that
must be met before the transition can occur. In our current prototype, three types of param-
eterized events can be received from the running system (via the Trace Engine): I

S Call (method, caller, callee): A Call event occurs when a method is invoked in the
running system. Each Call event includes the name of the method, caller, and callee.

Ylint (constructor, creator, instance): An mit event occurs when a constructor is in-
voked to instantiate a new object. The event contains the name of the constructor, the

name of the element requesting the constructor (in the creator parameter), and the
name and type, collected in the instance parameter, of the new element.

00 Modify (owner, field, value): A Modify event occurs when a member variable of an
object is assigned a value. The event includes the name of the owner object of the
field, the name of the field, and the value that was assigned to the field.

The icons next to each listed item show how the event types are indicated in figures containing

state machines. Although our current implementation uses only three types of events associated
with object-oriented implementations, the approach could easily accommodate other events and
programming styles.

8 CMU/SEI-2004-TR-016

When a state is activated by an event, the parameters of that event are recorded as state vari-

ables that can be referred to by subsequent state trigger conditions or actions. In this way, an

architectural action can use information from previous states. (We will illustrate how to ac-

cess these state variables below.)

Conditions are written as Boolean expressions over values of state variables (derived from

parameters of the current event or the events of previous states). Conditions may also use op-

erators to build up more complex expressions. For example, the expression v1 == v2 returns

true if vA is equal to v2, and v1 contains "read" returns true if v1 contains the string "read."

To illustrate, consider a trigger that contains a Modify (jF) event and the following condi-

tion:

field contains "Reader.lock" && owner == S3.instance

This condition is true when the field parameter of the Modify event contains the string

"Reader. lock" and the owner parameter is equal to the instance parameter for the Init event
that activated S3. (S3.instance is an example of accessing a state variable that was recorded

earlier.)

Actions. An action specifies a sequence of architecture-related operations that create or mod-

ify the software architecture of the running system. Actions are linked directly to the style of

the target architecture and are expressed using operations appropriate to that architectural
"style. For example, a pipe/filter style might include operations for creating pipes and filters,

and a client-server style might include operations for creating and connecting clients to serv-

ers. Similar to event parameters, operations may explicitly define values of state variables
through assignment, so these values may be used in later actions and conditions.

4.1.2 Informal Operational Semantics

DiscoTect must deal with sequences of events that are interleaved. To do this, Disc0Tect may
maintain more than one concurrently active state in a state machine. Each active state is
called a state activation. Each activation consists of a state and a binding for all variables in
that state. DiscoTect provides three forms of transitions: (1) ordinary, (2)fork, and (3)join.

Like other state machines, ordinary transitions remove one state activation and add another.
To support concurrency, DiscoTect also supports fork transitions that leave the original state

activations in place while also creating a new state activation in parallel with the original.
Likewise, DiscoTect has a join transition that merges two or more source state activations
into a single destination activation.

The current state of the State Engine is a set of state activations. The state engine begins with

a single activation for the initial state in the state machine. Whenever an event is received
from the trace engine, it is matched against all outgoing transitions from all current state acti-

vations. If the event matches the event specification for one or more transitions and the con-

dition for the transition evaluates to true, each matching transition is taken.

CMU/SEI-2004-TR-016 9

For ordinary transitions (i.e., non-forking), the source activation is removed, and the new ac-
tivation is added for the destination state. Variables in the new state are bound to values de-
fined in the transition or, if they are not defined there, to the values of the corresponding vari-

ables in the source activation.

If the transition is a fork, the machine retains the source state activation while creating the
destination activation. If the transition is a join, it can be triggered only if a state activation is
present for all of the source states of the join. In this case, the source activations are removed,

and the destination activation is created as usual.

Consider the state machine fragment in Figure 3,2 and assume that S I is currently active.
When S2 becomes active (because the trigger on the transition into 82 is fired), S2's activa-
tion consists of the following state variables:

"* instance, creator, and constructor from the lnit event of the trigger

"* filter, which is the result of an operation in the action

"* Sl.method, Sl.caller, and Sl.callee, which are copied variables from state S1

These variables may be referred to later as S2.instance, S2.filter, and so forth

The transition from SI to S2 is a fork transition. When it occurs, the state activation for S1 is
retained and a new state activation for S2 is spawned. This forking allows the creation of
other filter components to be tracked by the original state activation for S 1, while allowing

the new state activation for 82 to track subsequent events happening to the filter created by
the transition. In this way, the state machine can keep track of interleaved architectural map-
pings.

method contains
".main(java. tang. String[])"

CreatePipeForSystem(method);

-.Init '

tinstance contains "Filter"

filter = CreateFilter (instance);

Figure 3: State Machine for Discovering Filter Components

2 Throughout this report, we denote a fork transition by adding the H/icon on the transition.

10 CMU/SEI-2004-TR-016

4.2 Pipe/Filter Example
To illustrate the use of DiscoTect for discovering an architectural model, consider a simple

example in a Pipe/Filter architectural style. Assume that the style defines three component
-types: a type each for data input and output files (called InFile and OutFile), and a Filter type
whose instances consume inputs and produce outputs. There is also a Pipe connector type and
interface types specifying the input and output interfaces of filters and pipes.

Furthermore, assume that the Pipe/Filter style defines the following operators to create ele-
ments of the above types:

* CreatePipeFilterSystem (name)

* CreateFilter (name)

* CreatePipe (name)

* CreateReadPort (name, component)

* CreateWritePort (name, component)

* CreateSink (name, pipe)

* CreateSource (name, pipe)

* CreateAttachment (port, role)

For this example, assume that the implementation style uses the following conventions: (1)
an instance of any class that has "Filter" in its name represents the construction of a Filter

component; and (2) Java PipedReader and PipedWriter instances are used by filters to com-
municate data. After the write method of a PipedWriter is called and the read method of a

PipedReader is called, we need to wait for a call to the receive method of the PipedWriter

before we have all the information to create a Pipe in the architecture (the receive method
pairs instances of PipedReader and PipedWriter, defining the ends of the Pipe).

Knowing the style of the implementation and the style of the architecture, we construct a

state machine that represents the mapping described above to allow us to recognize when to

construct architectural elements. This state machine can be used to discover the Pipe/Filter
architecture of any system adopting these implementation conventions.

As an example, we wrote a system (called PrereqCheck) that is implemented using the con-
ventions described above. It creates a configuration of filters to check that students have ful-

filled prerequisites for preregistered courses by taking a stream of student entries from a file,

splitting the stream depending on whether prerequisites have been satisfied, checking that
students have taken particular courses, and then merging the stream to an output file. The
code consists of the following application-specific classes: 3

3 The filters in the following list are implemented as classes.

CMU/SEI-2004-TR-016 11

"* SplitFilter - This filter reads an input file one student entry at a time and determines

whether the student is in the computer science (CS) program. If so, the entry is sent to

one of the output pipes; if not, the entry is sent to the other pipe.

"* PassFilter - This filter checks each entry to see if a student has taken a prescribed course,
in which case the entry is passed on. Otherwise, the entry is discarded.

"* MergeFilter - This filter takes two inputs and merges them into one output stream.

"* RegSys - The RegSys class instantiates and starts the filters. Users can execute this class
by providing the input and output file names.

In the remainder of this section, we divide the state machine into two parts-(1) Creating Fil-

ters and (2) Connecting Filters with Pipes-which are described below.

Creating Filters. This part is responsible for creating the system and the filters in it. The por-
tion of the state machine for this part is shown in Figure 3. When a Call event is received
from the Trace Engine, it is matched against the triggers outflowing from all active states.
Initially, there is one state activation for the Start state. The State Engine will evaluate the

condition on the arc out of the Start state. The transition from Start to S 1 in Figure 3 looks for

a method name containing the string ".main(java.lang.String[])"; if this condition is satisfied

by the Call event, the Start activation goes away, S I becomes active, and the accompanying
action is executed. This action creates an empty architectural model of the Pipe/Filter style.
After S I becomes active, the trigger condition is evaluated for all newly intercepted object

initializations. In Figure 3, if the instance parameter to the Init event is a Filter, a new state

activation for S2 is forked due to the fork transition, and an architectural filter component is
constructed by the action. The action parameters indicate that the component name should be
captured from the new instance, and the component type is decided by the initialization con-
structor. This new component is assigned to the state variable Filter so that it can be refer-
enced later (for example, in Figure 4). If we follow through this state machine as above, we
obtain two state activations for states S I and S2, respectively. If a later Init event satisfies the
filter condition on the outbound arc of S 1, another filter component is created, along with

another concurrent state activation for S2 (which will have different variable bindings from

the first activation)

Running PrereqCheck with just this state machine produces the architecture depicted in Fig-
ure 5. Four filters are created, one by the constructor for the SplitFilter class, one by the con-
structor for MergeFilter, and the other two by the constructor for PassFilter. We use an ID
generator to label the architectural counterpart of the runtime object to avoid naming conflicts

when multiple instances of the same type exist (for instance, two PassFilters in this exam-
ple).

12 CMU/SEI-2004-TR-016

i,..Init

instance contains "PipedReadert',-. Ca

sl V•• "I' siO method contains "PipedWriter.write" &&

y > i~nft • .caller == SIO.instance && callee==S2. nstance

Create~ttancme ntan (PportWritepie rc port~rfeaPipe =

reT e'ttacOmente~p-- - • / "pt..Call. s CreateWr itePo rt (Nrie", S2.filter);

349V

method=cosntaiinls "PnpdReader'receive" && / ,S

Spcaller == S Menseailt er_

calleasse = IterierCa

CreatePipe (method + caller + callee); R l calleg fr SRninstance Sn
sink = CreateSink ("sink", pipeTransportFile); -De S2isac

source = CreateSoure M sac , pipeTransportFile);
Con etingFilters with Pipes.ecllha te ptrtsReadPipe
CreateAttachmentsofte rsn (portReadPipe, awiposnk); / CreateReadPort (ntadi, S2.efter);

S1 V

Figure 4: Th. ape S Machine Fragments for Discovering Pipe Connections

T Ihtaterm MergeFilter ea34 2 \354/

PassFilter_
351

Figure 5: The Architecture Fragment Resulting from Running the System and Using
the State Machine Shown in Figure 3

Connecting Filters with Pipes. Recall that the target system uses PipedReaders and Piped-

Writers to channel the output from one filter into the input of another. The state machine first

creates the ports on filters. For example, a write port is created after noticing the creation of a
PipedWriter and associating it with an architectural filter when an implementation filter
writes to it. Similarly, a read port is constructed when a PipedReader is created and a filter

reads from it. A pipe is created and connected after calling PipedReader's receive method.

The state machine that performs this process is shown in Figure 4. Newly created Piped-

Reader and PipedWriter objects are stored by $9/$10 in state variables that can be referred to

using S9. instance and SlO. instance. Since the creator is not necessarily the user of those

port creation action is produced at this point. The filters that are connected by this pipe be-
come apparent only when they are used. When PipedReader.read or PipedWriter.write is
called, the previously recorded PipedReader or PipedWriter is mapped to ports of the com-

CMU/SEI-2004-TR-016 13

ponents that correspond to the callers. Pipe data flow is signified by calling the receive

method of PipedReader. This method triggers the join transition from Si 1 and S 12 to S 13. In
this transition, the source state activations are removed, a new state activation for S13 is cre-

ated, and an action constructs and attaches a pipe between the previously defined ReadPipe

and WritePipe ports.

Putting it all together. The fragments of the state machine from the figures in this section
(including one for file output, which is not shown) produce a complete state machine that can

discover the architecture of PrereqCheck.

Figure 6 lists the events obtained when running PrereqCheck. This list contains only the
events that trigger actions in the state machine (4,550 events are actually received by Dis-

coTect from the Trace Engine), and for the sake of brevity, we have also removed multiple
calls to read and write pipes. The Component Creation part of Figure 6 contains the events
that cause the creation of the system and filters by the state machine fragment in Figure 3.

An example of interleaving occurs in the Connection section of the trace. First, the

PipedReaders and PipedWriters are created; then the process of writing to and reading from
them begins. So, the pipes are not created sequentially. The State Engine keeps track of sepa-
rate activations for each pipe, so, in this trace, separate activations after S 1 in the state ma-
chine (shown in Figure 4) track a PipedReader/PipedWriter pair.

After the PrereqCheck system has run, the entire architecture for that run will exist. The re-
sulting architecture from the trace in Figure 6, following the state machine in this section, is

shown in Figure 7.

14 CMU/SEI-2004-TR-016

1 . Call1(method="vi. RegSys. main Oava. lang. String[])",
requestor=nuII, provider=null)

2. Init(constructor="vl .SplitFilter", creator=null,M
instance="vi,.SplitFilter(name=", id=342)")

3. Init("vl. PassFilter", null, "vi.PassFilter(name=", id=349)")
4. Init("vi PassFilter", null, "vi PassFilter(name=", id=351)))
5. lnit("vl.MergelFilter", null, "vi MergeFilter(name=", id=354)") ýp

CD
6. lnit("java.io.FileReader", "vi.SplitFilter(id=342)",

"java.io.FileReader(id=369)") r
7. lnit("java. io.Buffered Reader", "vi .SplitFilter(id=342)",

"java.io.BufferedReader(id=41 8)")
8. Init("java.io.FileWriter", "vi MergelFilter(id=354)",

"java.io.FileWriter(id=357)")
9. Modify(name="java.io.Reader.lock",

value="java.io.FileReader(id=369)")
10. Call("java.io.BufferedReader.readLineo", "vi.SplitFilter(

id=342)", "java.io.BufferedReader(id=41 8)")
ii. lnit("java.io.PipedReader", null, "java.io.PipedReader(id=331)")
12. lnit("java.io.PipedReader", null, "java.io.PipedReader(id=334)")
13. lnit("Iava.io.PipedReader", null, "java.io.PipedReader(id=336)")
14. lnit("java~io.PipedReader", null, "java.io.PipedReader(id=338)") r
15. lnit("java.io.PipedWriter", null, "java.io.PipedWriter(id=328)") 0
16. lnit:("java.io.PipedWriter", null, "java.io.PipedWriter(id=329)") C

17. lnit("java.io.PipedWriter", null, "java.io.PipedWriter(id=333)") 0
18. lnit("java.io.PipedWriter", null, "java.io.PipedWriter(id=340)")
19. Call("java.io.PipedWriter.write(...)" "vi.Splitfilter(id=342)",

"java.io.PipedWriter(id=328)")
20. Call("java.io. Piped Writer.write(...)" "viSplitFilter(id=342)",

"java.io.PipedWriter(id=329)")
21. Call("java.io.PipedReader.reado", "vi PassFilter(id=35i)",

"java.io.PipedReader(id=338)")
22. Call("java.io. PipedReader.reado", "vi PassFilter(id=349)",

"java.io.PipedReader(id=33i)")
23. Call ("java. io. PipedWriter.write(...)" "vi .PassFilter(id=349)",

"java.io.PipedWriter(id=333)")
24. Call("java.io.PipedWriter.write(...)" "vi .PassFilter(id=351)",

"java.io.PipedWriter(id=340)")
25. Cal l("java. io. PipedReader. read()", "vi MergeFilter(id=354)"

"java.io. PipedReader(id=334)")
26. Call ("java. io. Piped Reader. read()", "vi.MergeFilter(id=354)",

"iava.io.PiDedReader(id=336)")

Figure 6: Relevant Output from the Event Filter

CMUISEI-2004-TR-O1 6 15

L4PassFilter
(ileýRea-der 36 /349

.. .-... SplitFilter MergeFilter_ 1 -
342 V354

FRieWriter_35/~
PassFilter I~- .-
35:1.

Figure 7: The Discovered Architectural Model of PrereqCheck

16 CMU/SEI-2004-TR-O1 6

5 Implementing DiscoTect

Recall from Section 3 that we need to solve three challenges in order to provide a general

framework for discovering architectures. In this section, we discuss our implementation for

each of these challenges.

Monitoring: The Trace Engine uses the Java Platform Debugger Architecture (JPDA) to cap-

ture system runtime events. The JPDA provides a communication channel between a debug-

ger and a target system. The debugger can send requests to the host virtual machine of the

target system querying for certain types of events. The host virtual machine can dispatch

events to denote changes of state in the target system. The Trace Engine acts in the role of

debugger and sends requests to the virtual machine(s) hosting the target system; the Trace

Engine queries for three types of events: (1) object instantiations, (2) method calls, and (3)
field modifications. The request also contains a filter that defines the set of classes in which

the Trace Engine is interested. At runtime, the target system's virtual machine intercepts re-

quested events generated by any of the classes defined in the filter, queues each event, and

sends it to the Trace Engine. Upon receiving a runtime event, the Trace Engine classifies it;

converts it into an lnit, Call, or Modify event; and puts it in the pipe connected with the Logic

Engine.

Mapping: The implementation of the DiscoTect State Engine follows the design in Section 4.

During initialization, the State Engine parses the state machine definition and activates the

initial state. Then, it keeps scanning the stream sent from the Trace Engine and evaluating the
newly produced events with the trigger conditions of currently active states. If a trigger con-

dition out of an active state is satisfied, the target state is activated, and any associated archi-

tectural actions are fired.

Architecture Building: We represent architectures using the Acme architecture description

language [Garlan 00]. (However, we are not restricted to this language; in principle, any ar-

chitecture language could serve in this capacity.),Operations on Acme architectures are de-
fined in a library that provides the operations that form building blocks of architectural ac-

tions.

CMU/SEI-2004-TR-016 17

18 CMU/SEI-2004-TR-O1 6

6 Adaptive Architectures for Mobile
Systems (AAMS) Case Study

In this section, we present a case study to determine the runtime architecture of AAMS, a
simulation testbed for experimenting with mobile system architectural design decisions
[Kazman 03]. The testbed allows users to specify usable system resources, tasks, and sched-
uling strategies and simulates the running of the mobile system. We chose the AAMS testbed
because it represents a fairly complex real-world application (approximately 28 KLOC [thou-
sand lines of code]), and the runtime architectural view of the system is well documented. By
analyzing AAMS with DiscoTect, we were able to compare our discovery results with the
original architecture documentation. This comparison illustrates the use of applying our tech-
nique to discover deviations between the architecture discovered by DiscoTect and the docu-
mented design architecture of AAMS. Furthermore, we can use this case study to illustrate
how we developed and refined the state machines to produce the final architecture.

Figure 8 shows the (informal) runtime architecture of AAMS as presented by Kazman and

colleagues [Kazman 03]; the following description of the runtime is also based on the de-
scription in this report. The simulation controller forms a simulation from the resources and
tasks, their configuration, user activities and events, and information that it reads from a set

of configuration and script files. The simulation controller also takes commands from the
simulation graphical user interface (GUI) to control runtime parameters and feedback. It then
processes each simulation frame to generate the actual performance of the system. Each
component in the application and resource layers simulates its own operation. A set of ser-
vices for file input/output (110), error reporting, and logging are available via pub-
lish/subscribe services to any simulated object.

CMU/SEI-2004-TR-01 6 19

Executive I
Script File

Resource
Action Configuration

Simulation Simulation Fle

Controller Controller GUI

CoTaskmpone
P P Task CofiguratIo rApplication Modeling

~ Logging

;=: : •; E rro r
TakTakReporting

----------------------- ------
Tak sk ,.....

Resource Publish/
eOIOOOIODOSubscribe

Legend: F ; iaa on Support ------ - Lof

Component Event Local
File Call

Figure 8: Documented Runtime View of AAMS

6.1 Design of the AAMS State Machine
In this section, we present the steps taken to produce the DiscoTect state machine for the pur-
pose of discovering the AAMS architecture model. Typically, writing these state machines is
a process of starting with fairly generic state machines to discover components and connec-

tions and then refining these state machines to produce architectures that correspond to a par-

ticular style. For this case study, we used a specialization of a publish/subscribe style that
distinguishes participating components as tasks, resources, and so forth. These extra compo-
nent types are based on the description of AAMS [Kazman 03].

To develop the final state machine, we first produced a state machine that merely observed

object creation and interaction (through procedure calls). We then refined this state machine
to classify objects into their architectural counterparts (e.g., resource, task). We also reused

the file I/O part from the pipe/filter example.

Up to this point, we had not discovered anything about the publish/subscribe part of the ar-
chitecture. The preliminary discovery results informed us that all the resource and task com-

ponents interact with an object of the PubSub class using two procedure calls named publish

20 CMU/SEI-2004-TR-016

and subscribe. We conjectured that the system implements the publish/subscribe process by

creating a PubSub object and invoking its two methods. This led us to design a state machine
for this portion of the architecture. This state machine creates an EventBus connector when it

notices the instantiation of a PubSub object in the implementation. Next, an EventTaker role

is created when DiscoTect notices two things: (1) a call to the publish method of the PubSub

object and (2) a Publish port on the component that corresponds to that call. Then DiscoTect
attaches the call and the port. Similarly PubSub.subscribe leads to the creation of three
things: (1) an EventSender role on the EventBus providing the method, (2) a Subscribe port in
the component requesting the method, and (3) the attachment.

6.2 The Discovered Architecture
Applying the above state machine to a running instance of AAMS yields the architectural
model shown in Figure 9. We have laid out this model to enable easier comparison with the
view in Figure 8. We uncovered four types of discrepancies between the documented archi-
tectural view and our discovered one:

1. isolated, extraneous components/connectors. The result shows two EventBus connectors,
one of which is isolated from the other parts of the system. It indicates that one instance
is instantiated but never used. Code optimization should resolve this discrepancy.

2. additional connections between components. Figure 8 does not show any connections
between the controller component and simulation components such as tasks and sched-
ulers. Nor does it inform us that some of the support components (Logger and Report-
ing) also subscribe to the event bus. Ignoring those "backdoor" connections makes the

architectural view less accurate; moreover, it might compromise architectural analysis
where all meaningful interactions between components should be considered. For exam-
ple, in evaluating the performance of a publish/subscribe infrastructure, the existence of
hidden communication channels could invalidate deadlock analysis.

3. misplaced connections between components. The discovered architecture shows a very
different file 1/0 scheme: instead of the GUI reading three files (see Figure 8), the con-
troller reads two files.

4. missing components/connectors. Two of the components (User and Environment) re-

corded in the document do not show up in the architecture.

CMU/SEI-2004-TR-016 21

--- --------

I I ~ Cotole ~ vn~bSh UI Cle~r

Procedurehall Data Pip

Figure-- 9: Discovered Arhiecur8o5AM

• i Task 2001

plementation.Eetu

22 ~ ~ ~ Ts 2027I204T-O

Componentp0 u tsc deber3or

SD Ca ger ý_ort

Smlto EvPublish • C le Port

'•= 0 • • DWritePort

SEventSubscribe II, ReadPort

Proced'ureCall Data-Pipe

Figure 9. Discovered Architecture of AAMS

To confim- that DiscoTect discovered the actual architecture of the implementation and to

understand the discrepancies, we conferred with the AAMS developers. They agreed that

DiscoTect produced a more complete and correct architectural description than their diagram

and uncovered some errors in their coding. However, the User and Environment components

are missing because they represent user interaction and are not actual components in the im-

plementation.

22 CMU/SEI-2004-TR-016

7 EJB Case Study

In this section, we present a second case study to determine the runtime architecture of

Duke's Bank Application-a simple Enterprise JavaBeans (EJB) banking application created
by Sun Microsystems as a demonstration of EJB functionality. Duke's Bank allows bank cus-
tomers to access their account information and transfer balances from one account to another.

It also provides an administration interface for managing customers and accounts. We use this
case study to demonstrate how the architecture of an EJB application can be discovered using
DiscoTect. We chose this system because its architecture is well documented in Sun Micro-
systems' J2EE (Java2 Platform, Enterprise Edition) tutorial [Sun 04], which enables us to
compare the actual discovered architecture with the one presented in the documentation.

For this case study, we adopted a new approach-using AspectJ [Eclipse 05, Kiczales 01]-
to capture system runtime events. We wrote an aspect that injected advice to object instantia-
tions, method calls, and field modifications. We compiled the Duke's Bank application along

with the aspect, using an AspectJ compiler instead of Sun's javac, so that system execution
events were traced as the application ran. The runtime information was then fed to the Trace

Engine, providing the raw material for the recognition process.

Figure 10 gives a high-level view of how the components interact in Duke's Bank system as
presented in the J2EE tutorial [Sun 04]. The EJB application has three session beans: (1) Ac-
countControllerBean, (2) CustomerControllerBean, and (3) TxControllerBean. (Tx stands for
a business transaction, such as transferring funds.) These session beans provide a client's

view of the application's business logic. For each business entity represented in the simplified
banking model, the application has a matching entity bean: AccountBean, CustomerBean,
and TxBean. The business methods of the AccountControllerBean session bean manage the
account-customer relationship and get the account information using AccountBean and Cus-
tomerBean entity beans. The CustomerControllerBean session bean provides methods for
creating, removing, and updating customers through CustomerBean entity beans. The TxCon-
trollerBean session bean handles bank transactions. It accesses AccountBean entity beans to
verify the account type and to set the new balance, and it accesses the TxBean entity bean to
keep records of the transactions.

7.1 Design of the EJB State Machine
In this section, we present the steps taken to produce the DiscoTect state machine for the pur-
pose of discovering the Duke's Bank architecture. For this case study, we used a specializa-
tion of an EJB style that distinguishes participating components as entity beans, session

CMU/SEI-2004-TR-01 6 23

beans, bean containers, a database, and so forth. These component types are based on the EJB
specification found on the EJB Web site [Sun 05a].

As we did in the previous case study, we first produced a state machine that merely observed
object creation and interaction (through procedure calls and object instantiations). We then
refined this primitive state machine to classify objects into their architectural counterparts
(e.g., beans, bean containers, a database) by checking the class constructor names. For exam-
ple, we created a SessionContainer object when its constructor had the name of "SessionCon-

tainer." The relationships between the beans, the bean containers, and the database were cap-
tured as follows: According to the EJB specification, the beans are maintained by their
corresponding containers, so we connected the beans with the containers controlling them by
observing the procedure calls made by the containers to manage the life cycles of the beans.
Knowing that database access was implemented using Java Database Connectivity (JDBC)
[Sun 05b], we monitored the standard JDBC application program interfaces (APIs) to un-

cover the connections between the beans and the database; the interactions between the beans
were also monitored and represented as connectors linking the beans together.

7.2 The Discovered Architecture

Applying the state machine just described to a running instance of Duke's Bank yields the
architectural model in Figure 11. We have organized the layout of the architectural model in

Figure 11 to roughly approximate the layout used in the published architecture (shown in Fig-
ure 10).

Bean Container

Session Beans Entity Beans

AcontDatabase Ben Db Acce
Be~n Bean

Nan -7T/Bean

L e g e n dB
e n C n a eBeanan8c

Database Bean Ob Access
Communication

Figure 10: Documented Architectural View of Duke's Bank Application

24 CMU/SEI-2004-TR-016

AccountControllerBean AccountContwollerBean
5

116117f 8256o2_11 2 I -Pa L •• 1! e

Legend

Entity Bean Sesseion Bean Bean Database Database

Cntaier Container Dtbs Esson Bean Ic Write Read

Figure 11: Discovered Architecture of Duke's Bank

We can make the following observations based on our extracted view of the architecture of
Duke's Bank:

reflection of runtime instances. Besides showing the bean and the containers, the discov-
ered result also details each bean and container instance created at runtime. The capacity
of tracing the individual bean and container instances is useful for further performance

analysis and fault diagnosis. In addition, the relatively complex m to n relationships be-
tween beans and bean containers are revealed.

verification of bean interplay. The interactions between the beans shown in Figure 11 are

"consistent with those described in the architecture shown in Figure 10: communrication
channels exist between AccountControllerBeanan d AccountBean; AccountController-
Bean and CustomerBean; CustomerControllerBean and CustomerBean; TxController-

Bean and TxBean; and TxControllerBean and AccountBean.

CMU/SEI-2004-TR-016 25

discrepancies in database access. Figure 10 does not show any connections between the

session beans and the database, which implies that all database access goes through the
entity beans. However a "database write" connector appeared in the discovered architec-

ture presented in Figure 11. Further source code analysis (performed manually) con-
firmed that AccountControllerBean does write directly to the database. As discussed in
the previous section, identifying communication "backdoor" connections like that one is
useful for architectural analysis and for ensuring architectural conformance.

26 CMU/SEI-2004-TR-016

8 Lessons Learned and Future Work

In this report, we described a technique for "discovering" the architecture of a running sys-

tem, using a set of pattern recognizers that convert monitored system observations into archi-
tecturally meaningful events. The key idea is to exploit implementation regularities and
knowledge of the architectural style that is being implemented to create a mapping that can
be applied to any system that conforms to the implementation conventions and to yield a
view in that architectural style.

This approach has several advantages. First, it can be applied to any system that can be moni-
tored at runtime. In our case, we have demonstrated two case studies written in Java, but we
have recently experimented successfully with the use of AspectC to extract run-time informa-
tion from C and C++ programs. In general, any monitoring environment that allows us to
capture object creation, method invocation, and instance variable assignment will serve as a
sufficient foundation for our runtime monitoring. Monitoring technology for other kinds of
implementations and system properties is an active research area (see Section 2) that should
continue to provide increasing capabilities in the future that we can use as leverage. Second,
by simply substituting one mapping description for another, it is possible to accommodate

different implementation conventions for the same architectural style or, conversely, to ac-
commodate different architectural styles for the same implementation conventions. Though
not described in this report, we have been able to successfully discover the Pipe/Filter archi-
tecture of a system implemented using a different pipe convention.

There are, however, several inherent weaknesses to the approach. The first is that it only
works if an implementation obeys regular coding conventions. Completely ad hoc bodies of
code are unlikely to benefit from the technique. Second, it only works if one can identify a
target architectural style, so the mapping "knows" the output vocabulary. Third, as with any
analysis based on runtime observations, it suffers from the problem that you can only analyze
what is actually executed. Hence, questions like "Is there any execution that might violate a
set of style constraints?" cannot be answered directly using this method. Fourth, the recogni-
tion engine needs to be created via an iterate-and-test paradigm, and hence the results are
somewhat dependent on the skill of the recognizer's creator. Thus, our techniques are best
viewed as one of several technologies that architects must have in their arsenal of architec-
ture-conformance checking tools. We believe that DiscoTect can be effectively combined
with tools such as Dali [Kazman 99] or ARMIN [O'Brien 03] to provide complementary
kinds of analysis, whereby runtime observations can be combined with statically extracted
facts. In this way, we should be able to achieve a more complete and accurate picture of the
as-built system.

CMU/SEI-2004-TR-016 27

These potential defects also point the way to future research in this area. First is the area of

system monitoring, which was already mentioned. Second is the area of codifying the ways

in which architectural styles are implemented. As technology advances, implementation tech-

niques will necessarily change, and it will be important to augment the set of mappings as
that happens. Third is the area of architectural coverage metrics, similar to coverage metrics
for testing. It would be good, for example, to have some confidence that in running a system

with various inputs, we have exercised a sufficiently comprehensive part of the system to
know what its architecture is. Fourth, we would like to find a way to make the definition of
implementation-architecture mappings more declarative. While the operational definition of

state machines as the carrier of those mappings is a good first step, we can imagine more ab-

stract forms of characterization that will be easier to create and analyze. Finally, we are de-
veloping tool support for defining state machines.

As mentioned above, our implementation can also be improved. In addition to using better

monitoring facilities, our approach could be extended beyond just noticing Create, Init, and

Modify events, and use any information that can be gleaned from the runtime system through

a probing technology (for example, object destruction or thread information). We plan to pro-
vide a mechanism to define these system-level events, so they can be used in state machines.

28 CMU/SEI-2004-TR-016

References

URLs are valid as of the publication date of this document.

[Aldrich 02] Aldrich, J.; Chambers, C.; & Notkin, D. "ArchJava: Connecting
Software Architecture to Implementation," 187-197. Proceedings of
the International Conference on Software Engineering. Orlando,
FL, May 19-25, 2002. New York, NY: Association for Computing
Machinery, 2002.

[Allen 94] Allen, R. & Garlan, D. "Formalizing Architectural Connection,"
71-80. Proceedings of the International Conference on Software
Engineering. Sorrento, Italy, May 16-24, 1994. Los Alamitos, CA:
IEEE Computer Society Press, 1994.

[Balzer 99] Balzer, R. M. & Goldman, N. M. "Mediating Connectors," 73-77.
Proceedings of 19th IEEE Conference on Distributed Computing

Systems. Workshop on Electronic Commerce and Web-Based Appli-
cations. Austin, TX, May 31-June 4, 1999. Los Alamitos, CA:
IEEE Computer Society, 1999.

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice, Second edition. Boston, MA: Addison-Wesley, 2003.

[Dias 03] Dias, M. & Richardson, D. "The Role of Event Description on Ar-

chitecting Dependable Systems," 150-174. Architecting Depend-
able Systems (Lecture Notes in Computer Science, Vol. 2677). Ber-
lin, Germany: Springer-Verlag, 2003.

[Eclipse 05] Eclipse. Aspectj project. http://eclipse.org/aspectj/. (URL valid as of
March 2005)

[Ernst 01] Ernst, M. D.; Cockrell, J.; Griswold, W. G; & Notkin, D. "Dynami-

cally Discovering Likely Program Invariants to Support Program
Evolution." IEEE Transactions on Software Engineering 27, 2

(February 2001): 99-123.

[Garlan 00] Garlan, D.; Monroe, R. T.; & Wile, D. "Acme: Architectural De-
scription of Component-Based Systems," 47-68. Foundations of

Component-Based Systems (Edited by Gary T. Leavens & Murali
Sitaraman). New York, NY: Cambridge University Press, 2000.

CMU/SEI-2004-TR-016 29

[Garlan 02] Garlan, D.; Kompanek, A. J.; & Cheng, S.-W. "Reconciling the
Needs of Architectural Description with Object Modeling Nota-

tions." Science of Computer Programming 44, 1 (July 2002): 23-49.

[Garlan 03] Garlan, D.; Cheng, S.-W. & Schmerl, B. "Increasing System De-
pendability Through Architecture-Based Self-Repair," 61-89. Ar-
chitecting Dependable Systems (Lecture Notes in Computer Sci-
ence Vol. 2677). Berlin, Germany: Springer-Verlag, 2003.

[Jackson 99] Jackson, D. & Waingold, A. "Lightweight Extraction of Object
Models from Bytecode," 194-202. Proceedings of the 21st Interna-

tional Conference on Software Engineering. Los Angeles, CA, May

16-22, 1999. New York, NY: Association of Computing Machinery,
1999.

[Kaiser 03] Kaiser, G.; Parekh, J.; Gross, P.; & Veletto, G, "Kinesthetics eX-

treme: An External Infrastructure for Monitoring Distributed Leg-
acy Systems," 22-30. Proceedings of the 5" International Active

Middleware Workshop. Seattle, WA, June 25, 2003. Los Alamitos,
CA: IEEE Computer Society, 2003.

[Kazman 99] Kazman, R. & Carriere, S. J. "Playing Detective: Reconstructing
Software Architecture from Available Evidence." Journal of Auto-

mated Software Engineering 6, 2 (April 1999): 107-138.

[Kazman 03] Kazman, R.; Asundi, J.; Kim, J. S.; & Sethananda, B. "A Simula-
tion Testbed for Mobile Adaptive Architectures." Computer Stan-

dards and Interfaces 25, 3 (June 2003): 291-298.

[Kiczales 01] Kiczales, G; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; &

Griswold, W. G. "An Overview of Aspect J," 327-353. Proceedings
of ECOOP 2001-Object-Oriented Programming, l1th European

Conference. Budapest, Hungary, June 18-22, 2001. Berlin, Ger-
many: Springer-Verlag, 2001.

[Luckham 97] Luckham, D. C. "Rapide: A Language and Toolset for Simulation
of Distributed Systems by Partial Orderings of Events," 329-358.
Proceeding of the DIMACS Partial Order Methods Workshop.

Princeton, NJ, July 24-26, 1996. Providence, RI: American Mathe-

matical Society, 1997.

[Madhav 96] Madhav, N. 'Testing Ada 95 Programs for Conformance to Rapide
Architectures," 123-134. Proceedings of Reliable Software Tech-

nologies -Ada Europe 96. Montreaux, Switzerland, June 10-14,
1996. Berlin, Germany: Springer-Verlag, 1996.

30 CMU/SEI-2004-TR-016

[Murphy 95] Murphy, G C.; Notkin, D.; & Sullivan, K. J. "Software Reflexion

Models: Bridging the Gap Between Source and High-Level Mod-

els," 18-28. Proceedings of the Third ACM SIGSOFT Symposium

on the Foundations of Software Engineering. Washington, DC, Oc-

tober 10-13, 1995. New York, NY: Association for Computing Ma-

chinery, 1995.

[O'Brien 03] O'Brien, L. & Stoermer, C. Architecture Reconstruction Case Study

(CMU/SEI-2003-TN-008, ADA413856). Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University, 2003.

http://www.sei.cmu.edu/publications/documents/03.reports
/03tn008.html

[Reiss 03] Reiss, S. "JIVE: Visualizing Java in Action Demonstration Descrip-
tion," 820-821. Proceedings of the International Conference on

Software Engineering. Portland, OR, May 3-10, 2003. Los Alami-

tos, CA: IEEE Computer Society, 2003.

[Shaw 95] Shaw, M.; Deline, R.; Klein, D.; Ross, T. L.; Young, D. M.; & Ze-

lesnik, G "Abstractions for Software Architecture and Tools to

Support Them." IEEE Transactions on Software Engineering 21, 4

(April 1995): 314-225.

[Sun 04] Sun Microsystems, Inc. The J2EE Tutorial, Second Edition.

http://java.sun.comldocs/books/j2eetutoriallindex.html (2004).

[Sun 05a] Sun Microsystems, Inc. EJB Downloads.
http://java.sun.cornproducts/ejb/docs.html (2005).

[Sun 05b] Sun Microsystems, Inc. J2EE JDBC Technology.
http://java.sun.com/products/jdbc (2005).

[Taylor 96] Taylor, R. N.; Medvidovic, N.; Anderson, K. M.; Whitehead, E. J.;
Robbins, J. E.; Nies, K. A.; Oriezy, P.; & Dubrow, D. "A Compo-

nent- and Message-Based Architectural Style for GUI Software."

IEEE Transactions on Software Engineering 22, 6 (June 1996):

390-406.

[Vestal 96] Vestal, S. MetaH Programmer's Manual, Version 1.09 (Technical

Report). Plymouth, NJ: Honeywell Technology Center, April 1996.

[Vieira 00] Vieira, M.; Dias, M.; & Richardson, D. J. "Software Architecture

Based on Statechart Semantics," 133-137. Proceedings of the 10h

International Workshop on Software Specification and Design. San
Diego, CA, November 5-7, 2000. Los Alamitos, CA: IEEE Com-

puter Society, 2000.

CMU/SEI-2004-TR-016 31

[Walker 98] Walker, R. J.; Murphy, G C.; Freeman-Benson, B.; Wright, D.;

Swanson, D.; & Isaak, J. "Visualizing Dynamic Software System
Information Through High-Level Models," 271-283. Proceedings

of OOPSLA'98: Conference on Object-Oriented Programming, Sys-
tems, and Applications. Vancouver, BC, October 18-22, 1998. New
York, NY: Association for Computing Machinery, 1998.

[Walker 01] Walker, R. J.; Murphy, G C.; Steinbok, J.; & Robillard. M. P. "Effi-
cient Mapping of Software System Traces to Architectural Views,"
31-40. Proceedings of CASCON 2000 (Edited by S. A. MacKay &
J. H. Johnson). Mississauga, Ontario, Canada, November 13-16,
2000. Toronto, Ontario, Canada: IBM Canada, Ltd., 2001.

[Wells 01] Wells, D. & Pazandak, P. "Taming Cyber Incognito: Surveying Dy-

namic/Reconfigurable Software Landscapes." Proceedings of the 1t

Working Conference on Complex and Dynamic Systems Architec-
tures. Brisbane, Australia, December 12-14, 2001. Brisbane, Aus-
tralia: Distributed Systems Technology Center at the University of
Queensland, 2001.

[Zeller 01] Zeller, A. "Animating Data Structures in DDD," 69-78. Proceed-
ings of the First International Program Visualization Workshop.
Finland, July 7-8, 2000. Porvoo, Finland: University of Joensuu,

2001.

32 CMU/SEI-2004-TR-016

REPORT DOCUMENTATION PAGE ForM Approve
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
esisting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORTTYPE AND DATES COVERED

(Leave Blank) December 2004 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Discovering Architectures from Running Systems: Lessons Learned F1 9628-00-C-0003
6. AUTHOR(S)

Hong Yan, Jonathan Aldrich, David Garlan, Rick Kazman, Bradley Schmerl

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER

Carnegie Mellon University CMU/SEI-2004-TR-016
Pittsburgh, PA 15213

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING AGENCY

HQ ESC/XPK REPORT NUMBER

5 Eglin Street ESC-TR-2004-016
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

One of the challenging problems for software developers is guaranteeing that a system as built is consistent
with its architectural design. This report describes a technique that uses automatically generated runtime ob-
servations of an executing system to construct an architectural view of the system. In this technique, map-
pings are developed that exploit regularities in system implementation and architectural style. These map-
pings describe how low-level system events can be interpreted as more abstract architectural operations. In
addition, this report describes the current implementation of a tool, called DiscoTect, that uses these map-
pings, and it shows how DiscoTect can highlight inconsistencies between implementations and architectures.
Furthermore, two case studies are provided that illustrate how DiscoTect works and how it can be applied to
real-world systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES

AAMS, Adaptive Architecture for Mobile Systems, architecture design, 42
DiscoTect, Enterprise JavaBeans, EJB, system architecture

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

